
Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Super Invoice -
Documentation

BoxSoft
Corporation

Super Invoice - Documentation2

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Table of Contents

Foreword 0

Part I Getting Started 3

... 31 Introduction

... 52 RTFM Warning!!!

... 63 Installation

... 104 Upgrading From Earlier Versions

Part II Template Usage 11

... 111 Adding SuperInvoice to you Applications

... 122 Invoice Control Template

.. 12Invoice Control Template

.. 12Populating an InvoiceControl Template

.. 12Template Settings - ABC Chain

.. 26Template Settings - Clarion/Legacy Chain

.. 29Adding the Regular Controls for "In-Place" Entry

.. 30Formula Classes

.. 30Embed Points

... 343 Shift Buttons

... 354 Child Window Button

... 375 Child Window OK Button

Part III Appendices 38

... 381 Example Programs

... 392 Project Defines

... 413 Troubleshooting

... 424 Contacting Technical Support

... 435 License Agreement

Index 44

Getting Started 3

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

1 Getting Started

1.1 Introduction

The Super Invoice template is designed to support "in-place" data-entry on a list box. The entire
transaction (the parent and all children) are held in memory until the [OK] button is pressed,
which is much superior to the regular "Form with a Browse" implementation. All features have
been developed with the following goals:

1. The feature must be easy to implement.
2. It must work with the regular Clarion templates.
3. All code must be visible in the template (i.e. no black-box DLLs).
4. The resulting programs should work intuitively and quickly.

Event though we build our Edit In Place (EIP) on top of Clarion's foundation, you'll discover that
ours is much better. It's easier to implement, more flexible, and far more powerful. Of course,
we're never finishing making improvements. If you have ideas, suggestions or comments (either
positive or negative), please pass them along. They're greatly appreciated.

Although it is called an "Invoice" template, it is useful in any situation where you have a parent
file and one or more child files, you want to provide in-place data entry, and you want to treat all
changes as a single transaction. Another example would be a purchase order.

In those situations where you can't fit all the information in the listbox, you can use a separate
"ChildWindow" to access these fields. For full-screen validation, we've also provided an
"OkButton" template that helps you perform this task.

Super Invoice versus Super Browse

Many of you may wonder about the difference between "Super Invoice" and "Super Browse".
Both templates are designed to support "in-place" data-entry on a list box. With Super Invoice,
however, the entire transaction (the parent and all its Super Invoice children) is held in memory
until the [OK] button is pressed. All disk updates are performed within a single LOGOUT+COMMIT
transaction. (If the machine is turned off during the edit, then a blank auto-inc placeholder
parent record would remain in the file, just as it would during a normal update of a basic auto-
incremented file.)

With Super Browse, the changes to the children are saved to the disk as they are entered. If the
machine is turned off before the update is complete, then the changes to the child will be saved,
while the parent retains its original values. Even with the "Restore Children after Cancel"
template, it is still better to use Super Invoice when possible. The one situation where Super
Browse would be preferable is if there are too many child records to load practically in memory.

ABC and Legacy Template Chains

This documentation pertains to both the ABC and Legacy (a.k.a. "Clarion") Super Template sets. In
some situations we've implemented features in ABC that are not in Legacy, primarily because the
old template chain was to be phased out. Due to customer pressures, however, Soft Velocity

Super Invoice - Documentation4

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

decided to reinstate support for the Legacy/Clarion chain.

Some of the Super Template features that are only in the ABC chain would be very difficult to
implement in the legacy chain. However, we'll attempt to do this wherever it seems feasible to
us. We apologize if this causes you any inconvenience. Please feel free to contact us if there's a
particular feature in ABC that you would like to see in the Legacy chain, and we'll see if your
needs can be accommodated.

For more information, see the following topics:

Adding a Super Invoice to your Application
Invoice Control
Shift Buttons
Child Window Button
Child Window OK Button

Getting Started 5

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

1.2 RTFM Warning!!!

It is very important that you read this documentation. If you follow the instructions step-by-step,
then the usage is very simple. It is almost impossible if you try to do it on your own!

Super Invoice - Documentation6

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

1.3 Installation

Installation Directory Structure

NOTE: As of version 6.6, we've changed our installation to the defacto "3rdParty" directory
structure. (In Clarion 7 this is actually the "Accessory" directory.) Your old CLARIONx\SUPER
directory has been renamed to CLARIONx\SUPER-OLD.

Once you've finished running the installation program, you should see the following structure
under your C55 or Clarion6 directory:

C:\CLARION6, C:\C55, etc.
+-LibSrc STA*.INC (ABC headers)
+-3rdParty
| +-Bin ST_*.HLP, ST_*.CNT, STAB_CNV.DLL
| +-Template STA?_*.TPL, STA*.TPW (ABC chain)
| | STC?_*.TPL, STC*.TPW (Clarion chain)
| +-LibSrc STA*.INC, STA*.CLW, STA*.TRN (ABC chain)
| | STC*.INC, STC*.CLW, STC*.TRN (Clarion chain)
| +-Images
| | `-Super *.ICO, *.CUR, *.WMF, *.GIF
| +–Docs
| | `–Super *.PDF (Documentation)
| `-Vendor
| `-Super
| +-QBE
| | +-Examples
| | | +–ABC *.DCT, *.APP, *.TPS (Examples) (ABC chain)
| | | `–Clarion *.DCT, *.APP, *.TPS (Examples) (Clarion chain)
| | `-Source
| | +-ABC *.TXD, *.TXA, *.DCT (Source) (ABC chain)
| | `-Clarion *.TXD, *.TXA, *.DCT (Source) (Clarion chain)
| +-Tagging
| | +-Examples
| | | +–ABC *.DCT, *.APP, *.TPS (Examples) (ABC chain)
| | | `–Clarion *.DCT, *.APP, *.TPS (Examples) (Clarion chain)
| | `-Source
| | +-ABC *.TXD, *.TXA, *.DCT (Source) (ABC chain)
| | `-Clarion *.TXD, *.TXA, *.DCT (Source) (Clarion chain)
| `-Etc.
| +- . . .
`-SUPER-OLD (ABC headers)
 `- . . .

For Clarion 7 and later versions it should look like this (note the two trees):

C:\Program Files\SoftVelocity\Clarion 7
`-Accessory
 +-Bin ST_*.HLP, ST_*.CNT, STAB_CNV.DLL
 +-Template
 | `-Win STA?_*.TPL, STA*.TPW (ABC chain)
 | STC?_*.TPL, STC*.TPW (Clarion chain)
 | STMH*.TPW (Shared)
 +-LibSrc
 | `-Win STA*.INC, STA*.CLW, STA*.TRN (ABC chain)
 | STC*.INC, STC*.CLW, STC*.TRN (Clarion chain)
 +-Images
 | `-Super *.ICO, *.CUR, *.WMF, *.GIF
 `–Docs
 `–Super *.PDF (Documentation)

Getting Started 7

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

"My Documents" or "Shared Data" (depending on OS)
`-Clarion 7\Accessory
 `-Super
 +-QBE
 | +-Examples
 | | +–ABC *.DCT, *.APP, *.TPS (Examples) (ABC chain)
 | | `–Clarion *.DCT, *.APP, *.TPS (Examples) (Clarion chain)
 | `-Source
 | +-ABC *.TXD, *.TXA, *.DCT (Source) (ABC chain)
 | `-Clarion *.TXD, *.TXA, *.DCT (Source) (Clarion chain)
 +-Tagging
 | +-Examples
 | | +–ABC *.DCT, *.APP, *.TPS (Examples) (ABC chain)
 | | `–Clarion *.DCT, *.APP, *.TPS (Examples) (Clarion chain)
 | `-Source
 | +-ABC *.TXD, *.TXA, *.DCT (Source) (ABC chain)
 | `-Clarion *.TXD, *.TXA, *.DCT (Source) (Clarion chain)
 `-Etc.
 +- . . .

To prevent conflicts between old Super Template files and same-named files in our new directory
structure, the new installers attempt to delete the old files. If it encounters problems, then an
error will be reported during the installation. Then you must delete any of the following files
from the old directories, if they also exist in the new directory structure:

C:\CLARION6, C:\C55, etc.
+-LibSrc STAB*.CLW, STCL*.CLW, STAM*.CLW, STCM*.CLW,
| STAB*.TRN, STCL*.TRN, STAM*.TRN, STCM*.TRN,
| STDEBUG.*
+-Template STAB*.TP?, STCL*.TP?, STAM*.TPW, STCM*.TPW,
| STGROUPS.TPW, STDEBUG.TPW
`-Bin ST_*.HLP, ST_*.CNT, ST_*.GID

For example, you can use a tool like the indispensable Beyond Compare
(www.scootersoftware.com) to investigate the contents of C:\Clarion6\LibSrc and C:\Clarion6
\3rdParty\LibSrc. View only files matching the mask ST*.* and hide all "orphans", which will show
the files that exist in both directories. Delete the files from C:\Clarion6\LibSrc, and then do the
same for the Template and Bin directories.

Filenames and Product Abbreviations

Super Template filenames generally start with the letters "ST". That's about all you can go on
most of the time. (Our image files don't follow this convention, but they are sequestered in
the Image\Super subdirectory.

The next two letters are usually AB (for the ABC chain) or CL (for the Clarion/legacy chain). One
exception is Super Stuff (MH), which uses AM, CM and MH. Also, if both the ABC and Clarion
chain share a TPW, then the AB/CL are skipped and it goes on to the product abbreviation.
(Again, Super Stuff is an exception, as it uses MH for the shared files.)

There are several TPWs that are shared by multiple Super Templates: STGROUPS.TPW,
STABABC.TPW, STBLDEXP.TPW, STDEBUG.TPW

The last four characters:

For TPL files, the last four letters are an underscore, followed by one of the following

Super Invoice - Documentation8

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

suffices. The exceptions are STABAEQB.TPL and ST?M_STF.TPL.

For TPW files, the last four letters may match one of these in its entirety, or be followed by
additional characters denoting the special purpose files.

Super Stuff (MH) is an exception, in that it uses STcMxxxx, where "c" is the chain of A or C,
and "xxxx" denotes the special purpose.

AEQB Super QuickBooks-Export (i.e. Accounting-Export QuickBooks)
BRW/BW Super Browse
DIA Super Dialer

FF Super Field-Filler

IE Super Import-Export

INV Super Invoice

LIM Super Limiter

PCD Super Passcode

QBE Super QBE

SEC Super Security

TAG Super Tagging

MH/STF Super Stuff (MH) (a.k .a. The "MikeHanson" Templates)

Update the Redirection File

The installation program is able to update your redirection file automatically. If you decline the
option during the installation, then you will have to edit the redirection file yourself. The three
things that must be found are the Templates, LibSrc and Images. For example, you might make
the following changes to the the *.* entry in Clarion 6:

. = .; %ROOT%\examples; %ROOT%\libsrc; %ROOT%\images; %ROOT%\template; %ROOT%
\3rdParty\template; %ROOT%\3rdParty\libsrc; %ROOT%\3rdParty\images\super

In Clarion 7 and above it will be more like this:

. = %ROOT%\Accessory\images; %ROOT%\Accessory\resources; %ROOT%\Accessory\libsrc\win; %
ROOT%\Accessory\template\win; %ROOT%\Accessory\images\Super

There are *.RED examples in the SUPER\DOC directory.

Register the Templates

Clarion allows you to have multiple template sets accessible in the same application. It does this
with the Template Registry. To use a Super Template, you must register it first. The installation
program attempts to do this for you, but in case it fails, or if your registry becomes corrupted,
then you must register them manually.

1. Load Clarion, then select the "Setup / Template Registry" pulldown menu option.

2. Press the [Register] button.

3. Select C:\CLARION\3rdParty\Template\ST_*.TPL (ABC) or ST_*.TPL (Clarion). The directory
name may not exactly match your system.

Getting Started 9

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Assuming this all went without a hitch, you're ready to start using the templates.

Super Invoice - Documentation10

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

1.4 Upgrading From Earlier Versions

Changing your APPs from the Clarion/Legacy to the ABC chain

With the release of Clarion ABC, we've decided to tow the line and work with Clarion's form of
Edit In Place. This makes some things easier and more powerful, and makes other things
impossible. Therefore, edit in place will not work the same as it did before. Some of the key
differences are:

1. You don't need to declare the associated edit controls for each column (or specify the control
range for the template). Instead, you declare the settings for each individual column. If you
wish, you can still create your own control for each column, or you can let the template create
it for you, or use any combination of the two.

2. You are not always in "edit mode". This means that you scroll around like a normal list box,
then hit the [Change] button (or double-click) to go into edit mode. (The "Auto Edit" option
can streamline this.) The old template did not include a Change button with the auto-
populated controls. To add a change button, add a normal button, then edit the screen source
and copy the #SEQ() attribute from the Insert or Delete button over to the new Change button.

3. Some of the navigation keys while in edit mode (like PgUp, PgDn, CtrlPgUp, etc.) are not
supported any longer. This is because we don't have control of it. (It's handled in the Clarion
EditClass.TakeEvent method.) We've requested that TopSpeed make it possible to add these
with a future version of Clarion.

4. You have many new types of edit controls now, including ENTRY, SPIN, CHECK, LIST+DROP,
Lookup Button, FileDrop, FileDropCombo, TEXT, etc.

5. Your EIP embed code will be much different. For example, instead of issuing a CYCLE to stay in
the same field, you must return LEVEL:Notice from the TakeAccepted method.

6. Most of the old embeds are now obsolete. They have been included as Legacy embeds, so that
you can move your code into the "proper" ABC embed points.

7. In the legacy Super Invoice, your Accepted and Selected events were fired often. Every time
that you exited a row, they were called. When you saved the Invoice, they were called again,
and they occurred at others times as well. This has been improved in the ABC version.
TakeSelected is called only when you are arriving in a field. TakeAccepted is called when you
are leaving the field, and all TakeAccepted for the entire row are called when you are leaving
the row.

Template Usage 11

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2 Template Usage

2.1 Adding SuperInvoice to you Applications

The SuperInvoice template is implemented as a control template. This means that you can place
it on any form that has a "SaveButton" template already present for the parent file. In fact, if you
have multiple child files for the parent, you can have a separate Super Invoice control for each
file. For example, you may have an invoice header file, a child file for products sold, and another
child for services rendered.

To add a Super Invoice to your form, you must perform the following five steps:

1. Populate the Invoice's control template, which gives you the Listbox, Insert, Change and
Delete Buttons.

2. Set the Options in the Invoice's template settings.

3. Populate regular Entry fields for things like file drops and specially formatted controls.

4. Add any desired code to the Embeds.

5. Add any desired Formulas.

If you wish to have a separate form for entering child information, then you can use the Child
Window Button control template. This window can contain as many or as few fields from the
child file as you wish. For any additional fields on the ChildWindow that are not in the EIP
Invoice, make sure that you specify that these fields are "hot fields" for the Invoice template.

Finally, there is an OkButton Control Template to be used on the ChildWindow to scan the whole
form for correct data entry. It's similar to the "SaveButton" in Clarion's standard templates,
except that it doesn't write the data to the file.

Super Invoice - Documentation12

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2.2 Invoice Control Template

2.2.1 Invoice Control Template

(Procedure Control Template)

The Super Invoice template is implemented as a control template. This means that you can place it on
any form that has a "SaveButton" template already present for the parent file. In fact, if you have
multiple child files for the parent, you can have a separate Super Invoice control for each file. For
example, you may have an invoice header file, a child file for products sold, and another child for services
rendered.

To add a Super Invoice to your form, you must perform the following five steps:

1. Populate the InvoiceControl's Listbox and associated Buttons
2. Set the options in the InvoiceControl's Template Settings:

a. ABC Chain
b. Clarion/Legacy Chain

3. Populate the regular Entry fields for In-Place data entry
4. Add any desired Formulae
5. Add any desired code to the Embeds

2.2.2 Populating an InvoiceControl Template

When you populate the InvoiceControl template onto your window, you will be given the
opportunity to populate the list box immediately. Feel free to do this now or later. Don't forget,
though, that after finishing with the list box, you must also place the [Insert], [Change] and
[Delete] buttons.

After populating the control template, don't forget the remaining steps:

2. Set the options in the InvoiceControl's Template Settings:
a. ABC Chain
b. Clarion/Legacy Chain

3. Populate the regular Entry fields for In-Place data entry
4. Add any desired Formulae
5. Add any desired code to the Embeds

2.2.3 Template Settings - ABC Chain

The Invoice control template has its prompts organized in a series of tabs. You can access these by
pressing the [Extensions] button in the procedure properties window, or by accessing the "Actions" item
from the listbox's pop-up while editing the window.

Template Usage 13

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

General Tab

Child File - This is the "detail" or "line items" file for the transaction. Normally you would add this
directly beneath the Parent file in your procedure's file schematic window. The Child must be on
the "MANY" side of a relationship with the Parent. If it isn't, then the template will warn you of
this during code generation.

LIST Line Height (NEW in Super Invoice 6.01) - If you want to space out the rows, enter a number
here, like 12. You can also use a variable, to control it at run-time.

Disable Popup Menu (NEW in Super Invoice 6.01) - By default, a popup is supported. If you with to
complete turn it off, you can disable it here. Alternatively, you can set the UsePopup class
property; when you set "Disable" here, then UsePopup=0.

Allow Edit via Popup (NEW in Super Invoice 6.01) - By default, the user may use the popup to
insert, change and delete records. If you wish to disable this feature, turn this option OFF.

Allow Empty Invoice - If you wish to permit the user to create a transaction without any line items,
then turn this ON. If it is off, the user will be forced to add at least one row to the child file. If
they try to save the empty invoice, they will be presented with the "Cannot be empty" message.

"Saving in Progress" Window Text - If you will have many child records, and updating them all will
take a significant period of time, then you might want to have a window appear telling the user
what's happening.

Super Invoice - Documentation14

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

"Disable Any Row Edit" Condition - If you want to prevent all editing operations (insert, change and
delete), then specify the condition here.

Use DELETE(Child), not Relate:Child.Delete() - Sometimes Btrieve and SQL can be a bit antsy in
their handling of relational deletes. In some situations turn this ON will alleviate troubles with
deleting invoices. We made significant changes to the way we handle transactions and
SQL in Super Invoice 6.0, so this is will not be needed as often as it was before.

Transaction Logout/Commit - These settings determine whether children of the parent are updated
using transactions.

Save everything as a single transaction - Do you want to use a transaction frame?

Conditional Transaction Support - This expression will determine at run-time whether a
transaction frame is used.

Template Usage 15

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Additional Tables - When the Parent+Child transaction is saved, all associated files are
included in a LOGOUT+COMMIT transaction frame. If you have additional files that you
want to include in the transaction update operation, then you can add these here. For
example, if you are adjusting inventory levels in your Product table, you would include
this here.

Transaction Manager - Class settings for the transaction manager.

Columns Tab

Each editable column must be included in this list. Usually these will be fields from the child file,
although you can also specify fields from other files or local variables. Be aware, however, that only
child record is saved in the end, so any other fields will be current only during the editing session. The
individual columns entries contain the following settings:

Super Invoice - Documentation16

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Column: General Tab

Field - This is the name of the field in the list box that you wish to edit. This must be a field in
your "Child" file, specified earlier. If you specify a field that does not exist in the list
box, or if the field is from a file other than the "Child" file, then the template will warn you
during code generation.

Use Existing Control - Normally you will let the template create entry controls at runtime.
There are situations where you may want to use your own control. For example:

- FileDrop and FileDropCombo control templates
- Many control settings, like a different picture, color, etc.
- Checkbox description different than the column header.

Class Definition - These are the standard class settings that Clarion uses in its own EIP. If you
are deleting and adding columns to the list, be careful that your Object Names are
unique. It is strongly suggested that you do not change the default class unless you
really know what you're doing! One common reason would be to use SBRW::
EditEntryLUClass instead of SBRW::EditEntryClass, to add an ellipsis [...] button
beside an entry control, which you could trap with TakeButtonAccepted.

Template Usage 17

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Column: File Lookup Tab

File Lookup - Use these settings to perform file lookup validation on the column. If you are
using an existing entry control on your window, you can place the lookup information in
that field's Actions tab instead. However, if you place it here you can get an ellipsis
button beside your entry control.

Provide Lookup Button - This will place an ellipsis button [...] beside your field.

Goto next field after lookup button - When the user presses the button and then selects an
item, do you want focus to automatically jump to the next column (as if they pressed
Tab)?

Super Invoice - Documentation18

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Column: Date Entry Tab

Date Entry - This adds quicken style date hotkeys to hop around the dates, as well as a
calendar lookup button. Of course, this is only useful for a date field.

Provide Calendar Lookup Button - If you decide to use the calendar lookup, you must import
CALENDAR.TXA from CLARION\SUPER\SRC_ABC\INVOICE\. Alternatively, you can

use your own Calendar procedure. However, it must take the current date as a LONG
parameter. It must return the newly selected date, or zero to indicate "Cancel" (stay in
the column and don't change the value).

Goto next field after calendar button - When the user presses the button and then selects a
date, do you want focus to automatically jump to the next column (as if they pressed
Tab)?

Template Usage 19

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Column: Misc Tab

Place button beyond right border - If you don't have room for the lookup button (or drop
button) in your column, or you just like the alternate appearance, then this setting will
force the button to appear on the right-hand side of the column (temporarily overlapping
the column to the right).

Checkbox uses header text - If your column contains a checkbox, then this setting will cause
it to copy the header text for use in the EIP checkbox control. If this is OFF, then there
will be no text.

NOTE: To create a checkbox control, turn on the one of the Icon settings in the listbox
formatter, but don't specific any icons. Super Invoice will handle that for you.

"Disable Column Edit" Condition - If a particular column is conditionally edited, place that
condition here. Don't forget to refer to the variables in the queue (e.g. INV1.Q.Pre:

Field). If the condition is True, then editing is prevented.

NOTE: The Clarion/Legacy chain handles skipped fields differently.

Super Invoice - Documentation20

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Column: Embeds Tab

These buttons let you quickly jump to the embeds associated with this column. In most cases
you will be using TakeAccepted, occasionally TakeSelected, and rarely TakeEvent. There are
other EIP methods that can be accessed from the main embeds window, but these buttons are
handy for the most common needs.

NOTE: The individual child records are stored in a queue while the invoice is being edited.
When you are referencing the fields in your embeds, you must make sure that you
prefix the field names with the name of the Super Invoice object (from the Classes tab
described below), plus "Q". For example, Itm:Quantity would be INV#.Q.Itm:

Quantity. The "INV#" is dependent on the object name.

Template Usage 21

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Insert Tab

"Disable Insert" Condition - If it's sometimes invalid to add more rows to the invoice, then put that
condition here. Any non-zero value indicates "disabled". You can also display a message.

Insert Position - When the user presses Insert, do you want the new row to appear at the top of the list,
at the bottom, before the current row, or after the current row?

Automatically add when at bottom - When you get to the bottom of the existing rows (or the first row
on an empty transaction), you can press the [Down] key (or [Tab] from the last field in the row)
to create a new entry. If this option is turned off, then you must press the [Insert] button to add
a new row. You can control this option at run-time using the AutoInsert property.

"Bottom Row is Empty" Condition - If the user accidentally presses [DownKey] or [TabKey] too many
times (and "Automatically add when at bottom" is turned on above), then one or more new rows
will be created. If you place a condition here, the user will be able to press [UpKey] or
[ShiftTab] to automatically delete the rows. For example, if the row required a product number
to be valid, then your condition might be Itm:PrdNo=0. Notice that this is the "empty" condition,
not the "full" one.

Be forewarned, though, that if you also have a validation check on that field, then they may not

be able to exit the field before entering a valid value. In that case, you must hit the [Delete]
button to remove the bottom row.

If the user creates a bunch of blank rows, then adds a valid one at the bottom, the "empty" rows

in the middle will not be deleted. The user will have to use the [Delete] button to get rid of them.

Field Priming For New Child - This is identical to field priming in a regular form, except that it applies
whenever a new row is created, instead of when the form is called for an insert. The system will
automatically use any initial values from the dictionary as well. Finally, you can also use the
embed point to accomplish this task.

Super Invoice - Documentation22

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Change Tab

"Disable Change" Condition - If it's sometimes invalid to change rows in the invoice, then put that
condition here. Any non-zero value indicates "disabled". You can also beep and/or display a
message.

Delete Tab

Template Usage 23

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

"Disable Delete" Condition - If it's sometimes invalid to change rows in the invoice, then put that
condition here. Any non-zero value indicates "disabled". You can also beep and/or display a
message.

Confirm when row is deleted - Do you want to warn the user when they delete a record?

Navigation Tab

Automatically invoke "Edit-In-Place" mode - When the list box is selected, do you want to
automatically instigate Edit-In-Place? This is equivalent to highlighting the row and pressing
[Change] or [Ctrl-Enter]. It also jumps to the clicked column.

Support checkbox toggling while not in EIP mode - If you choose not to auto-invoke EIP, then you
may still want the user to be able to toggle checkboxes by clicking on them. If so, then turn
this ON.

Remain Editing when tabbing off row, when Enter key pressed, when Up/Down key pressed -
These three options control what happens when you leave the row using these methods. Do
you want remain in EIP mode, or to revert to a regular selector bar?

Enter = Tab - Should the Enter key be interpreted as a Tab?

Retain column when Up/Down key pressed - Do you want stay in the same column when the user is
scrolling up and down, or do you want to jump back to the first column when you move to a new
row?

Validate entry when Shift+Tab pressed - Do you want to validate entries when the user is moving
backwards through the columns?

Super Invoice - Documentation24

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Hot Fields Tab

If there are fields that you wish to be included that are not visible in the list box, then include them here.
 The most common example is if you are using the ChildWindow template, and you have fields on that
window that are not in the list box.

Colors Tab

List Selector Color During Edit-In-Place - The bold highlighting on the row can be distracting to the
user during EIP. To change the selector bar color during EIP, use these settings. It makes it
much easier to see which field they are in.

The rest of the Color settings are the same as a regular BrowseBox.

Icons Tab

The Icon settings are the same as a regular BrowseBox.

Styles Tab

The Style settings are the same as a regular BrowseBox.

Totaling Tab

These totals are set up in the same was as regular totals on a browse box. You set the "Target Field"
and the "Field to Total". You can total "Each Record Read", or only when a "Specified Condition" is
true.

You can also do a running balance total:

Template Usage 25

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Enable Running Balance - Turn on the running balance feature.

RB Detail Variable - This is the field that will hold the running balance on each row. Usually you
would use a local variable, although you may want to store the running balance in a child
field.

Incrementing Type - This specifies the type of source:

One Field - You are totalling a single field, potentially with both positive and negative
values.

Two Fields - You separate Positive and Negative value variables (e.g. Debit and Credit).

Expression - Your situation is more complex, so enter the expression representing the
value for each row. Your expression must use the invoice queue variables, not
the original fields.

Starting Balance - If your balance doesn't start with zero, then specify the source for that here.

Ending Balance - The final balance is stored in this variable.

Classes Tab

These settings control some of the ABC Class attributes. Normally you will not need to change
anything here. The most important element for the average developer is the "Object Name". This is the
label that you use to reference the fields in the queue. For example: INV6.Q.Itm:Quantity. If you

don't like to remember "INV6", then you can change it to something else like "Invoice" or

"ItemList".

After setting the template options, don't forget the remaining steps:

3. Populate the regular Entry fields for In-Place data entry
4. Add any desired Formulae
5. Add any desired code to the Embeds

Super Invoice - Documentation26

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2.2.4 Template Settings - Clarion/Legacy Chain

The Invoice control template has its prompts organized in a series of tabs. You can access these by
pressing the [Extensions] button in the procedure properties window, or by accessing the "Actions" item
from the listbox's pop-up while editing the window.

General Tab

Parent File - This is the "header" file.

Child File - This is the "detail" or "line items" file for the transaction. Normally you would add this
directly beneath the Parent file in your procedure's file schematic window. The Child must be on
the "MANY" side of a relationship with the Parent. If it isn't, then the template will warn you of
this during code generation.

First/Last Entry Field - These two fields specify a range of controls (in screen structure order) to be
used for EIP.

Insert Tab

Template Usage 27

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Allow new child rows - Turn this OFF to prevent the user from creating additional rows (beyond those
that are pre-populated).

Automatically add when at bottom - When you get to the bottom of the existing rows (or the first row
on an empty transaction), you can press the [Down] key (or [Tab] from the last field in the row)
to create a new entry. If this option is turned off, then you must press the [Insert] button to add
a new row.

Goto first field for new child rows - When a new row is added, should focus always go to the first EIP
field in the row (rather than staying in the same column)?

"Bottom Row is Empty" Condition - If the user accidentally presses [DownKey] or [TabKey] too many
times (and "Automatically add when at bottom" is turned on above), then one or more new rows
will be created. If you place a condition here, the user will be able to press [UpKey] or
[ShiftTab] to automatically delete the rows. For example, if the row required a product number
to be valid, then your condition might be Itm:PrdNo=0. Notice that this is the "empty" condition,
not the "full" one.

Be forewarned, though, that if you also have a validation check on that field, then they may not

be able to exit the field before entering a valid value. In that case, you must hit the [Delete]
button to remove the bottom row.

If the user creates a bunch of blank rows, then adds a valid one at the bottom, the "empty" rows

in the middle will not be deleted. The user will have to use the [Delete] button to get rid of them.

Field Priming For New Child - This is identical to field priming in a regular form, except that it applies
whenever a new row is created, instead of when the form is called for an insert. The system will
automatically use any initial values from the dictionary as well. Finally, you can also use the
embed point to accomplish this task.

Colors Tab

The Color settings are the same as a regular BrowseBox.

Icons Tab

The Icon settings are the same as a regular BrowseBox.

Totaling Tab

These totals are set up in the same was as regular totals on a browse box. You set the "Target Field"
and the "Field to Total". You can total "Each Record Read", or only when a "Specified Condition" is
true.

Super Invoice - Documentation28

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Misc Tab

Support immediate checkbox toggling - When the user clicks on a checkbox column, should the
checkbox be toggled automatically? The alternative is for the focus to arrive, but not
affect the value until it's clicked again or the user presses the Space key.

Enable final check of entire invoice - This instructs Super Invoice to validate all fields in all rows
when the transaction is saved. If you turn this ON, be aware that the Accept processing
will be executed during the save process, as well as during data entry.

Use careful but inefficient method to save Change - This option deletes all existing child rows
from the table before resaving them. Otherwise, if a record hasn't changed, then it won't
be rewritten.

Use {PROP:LazyDisplay} - Use the "Lazy Display" to reduce flicker. There are very few situation where
you would need to turn this off.

Allow Empty Invoice) - If you wish to permit the user to enter no line items, then turn this ON. If it is
OFF, the user will be forced to add at least one row to the child file. If they try to save the
empty invoice, they will be presented with the "Cannot be empty" message.

Skipping Columns

To skip a column, you do not disable the entry field. Instead, you must use the "Skip" setting.
Search for Skip in the generated source, and you’ll see it several times. For example, in the
Clarion/Legacy example program, you’ll see the following structure for the Child QUEUE:

ChildList:Queue QUEUE,PRE()
INV6::Itm:PrdNo LIKE(Itm:PrdNo)
INV6::Prd:Name LIKE(Prd:Name)
INV6::Itm:Quantity LIKE(Itm:Quantity)
INV6::Itm:Price LIKE(Itm:Price)
INV6::Itm:Tax1 LIKE(Itm:Tax1)
INV6::Itm:Tax2 LIKE(Itm:Tax2)

Template Usage 29

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

INV6::Itm:Extended LIKE(Itm:Extended)
Skips GROUP
Itm:PrdNo:Skip BYTE
Itm:Quantity:Skip BYTE
Itm:Price:Skip BYTE
 END!GROUP
Skip BYTE,DIM(3),OVER(Skips)
INV6::Position STRING(1024)
 END!QUEUE

If we wanted to skip the Itm:Quantity field, we would do this:

ChildList:Queue.Skips.Itm:Quanity:Skip = True

This value is stored for each queue record, so that you can conditionally set the Skip attribute
differently for each row.

Also, if a column is to be hidden/skipped for the duration of a session, then set the column width
to zero after the window is opened, but before the InitWindow routine is called. For example:

?ChildList{PROPLIST:Width, INV6::Column:Itm:Price} = 0

After setting the template options, don't forget the remaining steps:

3. Populate the regular Entry fields for In-Place data entry
4. Add any desired Formulae
5. Add any desired code to the Embeds

2.2.5 Adding the Regular Controls for "In-Place" Entry

If you're using the Clarion/Legacy chain, then you must create an entry control for each EIP
column.

If you're using the ABC chain, then the template will automatically create controls for data entry
at runtime. There are a few situations where you might want to create your own entry controls,
though. For example, you may want to use the FileDrop or FileDropCombo. Or you may want to
use a checkbox, but you want to use a different description from the automatic usage of the
column header. Or you may want to use a picture that's different from the one defined in the
dictionary. Or you might want to use a special font.

For some of these (like the picture, color, checkbox text, font, etc.), you can use property syntax
assignments in the CreateControl method. However, it's often easier just to create a regular
control, and to tell the template to use that instead of doing it behind the scenes.

If you plan to use a FileDrop or FileDropCombo, you must populate an additional template in the
Extensions window. Highlight the FileDrop(Combo), then press [Insert]. Depending on your
control type, you'll be able to choose one of two helper templates from the list:

Super Invoice - Documentation30

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

After selecting the template, it will appear below your FileDrop(Combo) in the extensions
window:

NOTE: When you're using a FileDropCombo, your USE variable must name the corresponding EIP
field to be updated. For example, if your EIP field is Cus:City, and your FileDropCombo
lets them select a record from the City file, then the FDC control's USE variable must be
Cus:City, not Cit:City.

After adding your regular entry controls, don't forget the remaining steps:

4. Add any desired Formulae
5. Add any desired code to the Embeds

2.2.6 Formula Classes

There are two additional formula classes provided by the InvoiceControl template:

Prime Fields of ... record for new Row - This is the fourth method for priming fields in a new row. The
other three are "Dictionary", "Template Prompts", and "Embed".

Format a variable in the ... - This class is used to calculate values to be displayed in a row.

After adding your regular entry controls, don't forget the remaining step:

5. Add any desired code to the Embeds

2.2.7 Embed Points

When it comes to hand-code, there are two very important things to realize about the ABC Edit-In-Place:

1. The controls are not updating the file's fields. Rather, the queue buffer receives all field values
until the row is saved. Therefore, it is useless to say:

IF Itm:Quantity=0 THEN RETURN Level:Notify.

Instead, you should say:

IF INV#.Q.Itm:Quantity=0 THEN RETURN Level:Notify.

"INV#" represents the name of your Invoice object. If you don't know the name of the object,

look in the Classes tab of your Invoice's extension settings. You can change it there, if you
wish.

This makes it difficult for normal templates, as they expect to work with regular fields. We

made our template explicitly handle Clarion's FileDrop and FileDropCombo templates.

Template Usage 31

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Supporting each additional template will required special treatment.

2. EIP is controlled by the AskRecord method of the SINV::InvoiceClass. It uses its own ACCEPT
loop, and it passes very few events through to your own code. Normally you should use the
TakeSelected and TakeAccepted methods to handle your validation code. When you want to
stay in a field (e.g. because of validation failure), then you must return LEVEL:Notify from

TakeAccepted. For example:

IF INV3.Q.Itm:Type = 'X' !If it's a bad value
 RETURN Level:Notify !Stay in the same field
END

If, instead, you're using TakeEvent, then you must return EditAction:None to stay in the

same field.

NEW in Super Invoice 6.01 - You can check the value of the Request property to determine if you are

Inserting, Changing or Deleting a row. Compare it againsts the standard equates: InsertRecord,

ChangeRecord and DeleteRecord. Depending on your scope, you'll use SELF.Request or

INV#.Request (e.g. INV3.Request). This feature is not available in the Clarion/Legacy chain,

because the system is basically always in "Change" mode during the EIP process.

NEW in Super Invoice 6.03 - You can check the value of the AcceptAll property to determine if you

are in "all columns in the row" validation mode. The value will be True or False. Depending on your

scope, you'll use SELF.AcceptAll or INV#.AcceptAll (e.g. INV3.AcceptAll). For the Clarion/

Legacy chain, this is called INV#:AcceptAll. You can also set this value to False during the

validation, to halt the process.

The easiest way to access the Super Invoice embeds is through the individual column settings in the
extension. You can also get their through the regular Procedure Embeds button. Here are the methods
that you are most likely to use:

Invoice Manager Methods

BeforePrimingChild, BeforePrimingChildR, BeforeAddingChild, BeforeAddingChildR,
BeforeDeletingChild, BeforeDeletingChildR, NotUpdatingChild - These methods are useful
if you are doing things like maintaining inventory levels in another file. These methods are called
when inserting and deleting records from the child file. For example, BeforeAddingChild

could have:

Prd:No = Itm:PrdNo
Access:Product.Fetch(Prd:NoKey)
Prd:OnHand -= Itm:Quantity
Access:Product.Update

The code in BeforeDeletingChild would be the same, except that it would be "+=" instead

of "-=". In this situation you should also include the Product file as an "Additional LOGOUT
File".

The methods with "R" suffix can return LEVEL:Notify or LEVEL:Benign to notify the system

that the save operation should be aborted.

NotUpdatingChild is called for those rows that haven't changed. It may still be necessary

for you to do something in those situations.

Super Invoice - Documentation32

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

CalcTotals - If you want to modify how the totals are calculated, this is the place to go. All total
calculation code is generated directly in your source module.

IsEmptyRow - This method returns True if the row is considered to be "Empty" and is a candidate for
automatic deletion from the bottom row of the list box. The expression that you place into the
"Bottom Row is Empty" Condition is generated into this method, or you can place the code into
this method yourself.

SetQueueRecord - This method is used to assign the values from the file fields into the queue fields. If
you have any extra formulae, like calculating extended totals, then you should place these here.
 This is one situation where you don't use the INV#.Q.Pre:Field notation. Instead, use the field
names themselves.

EqualOriginalRow - This virtual method is called by the invoice class to determine if a particular row
has changed. You may want to override it if there are special circumstances where the row
would appear to be the unchanged, when it really has changed.

InsertEnabled, ChangeEnabled, DeleteEnabled - These three virtual methods are call by the invoice
class to determine whether the update operations are acceptable for the current row. Usually
you'll use the template settings to accommodate this, but you may want to override these
directly.

LoadOriginal - This is usually called after the initial records are loaded, as a "snapshot" of the starting
point. When it comes time to save the invoice, the class compares the current records in the
queue with those saved by LoadOriginal. If they are different, then the invoice is updated on
disk.

In some situations you may want to pre-load default records when an invoice is first added. In

this situation, LoadOriginal will show no records, which doesn't correspond to the defaults that
you've pre-loaded. In that situation, call LoadOriginal after you pre-load the records, and it won't
be confused by your defaults.

InsertQueue, DeleteQueue - These virtual methods are responsible for adding and deleting records in
the queue. If you need to do something each time a queue entry is added and/or deleted, then
use these derived methods.

TakeAskRecordEvent - This virtual method is called whenever the AskRecord method processing an
event. It gives you the ability to hook into the activity of the other hidden EIP ACCEPT loop.
You can return the following values:

LEVEL:Benign The event should be processed normally (the default from the base
virtual method).

LEVEL:Program The event was consumed, but EIP should continue.
LEVEL:Notify EIP should save the row and quit.
LEVEL:Fatal EIP should quit without saving the row.

NotUpdatingChild - This virtual method is called when a row has not changed, so does not need to
be re-written to the file. Use the derived method to perform any special operations in
this situation.

EditClass Methods

CreateControl - This method is called when the EIP is initiating. Even if you are using your own entry

Template Usage 33

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

control, it is still called. If you want to tweak the appearance of your control, you should do it
here.

TakeAccepted - This method is called each time you exit a field, and for all fields on the row when you
are leaving the row. If there is a problem with the field's value, then return Level:Notify. Be sure
to use the INV#.Q.Pre:Field notation when checking fields' values.

TakeSelected - This is similar to TakeAccepted, except that it is called when you enter into the field,
not when you exit it. It is not called when leaving the row.

TakeEvent - This method is called before TakeAccepted and TakeSelected. It actually directs traffic to
the appropriate method. You could use this if you wanted to add additional hot keys to a field.

SetupAlertKeys - If you are adding your own hotkeys to a column, you must assign them using runtime
property syntax in this method. For example:

SELF.Feq{PROP:Alrt,10} = CtrlT

Of course, it is your responsibility to trap that keycode in TakeEvent with something like this:

IF E=EVENT:AlertKey AND KEYCODE()=CtrlT
 CHANGE(SELF.Feq, TODAY())
END

Column Numbers

There are situations when you will need to refer to column numbers. Rather than hard code
these as actual numbers, you can reference them via automatically generated properties. For
example:

SELF.ColumnNumber.Prd:Name
SELF.ColumnNumber.Itm:Quantity
SELF.ColumnNumber.Itm:Price
SELF.ColumnNumber.Itm:Tax1
SELF.ColumnNumber.Itm:Tax2
SELF.ColumnNumber.Itm:Extended
SELF.ColumnNumber.WrpT:Name
SELF.ColumnNumber.Itm:Notes
SELF.ColumnNumber.Itm:Hold

Depending on where you are in the code, you may need to use the invoice object's name rather
than SELF (e.g. INV6.ColumnNumber.Prd:Name).

Super Invoice - Documentation34

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2.3 Shift Buttons

(Procedure Control Template)

This control template provides buttons that can shift individual rows up and down. The window
must contain an Invoice control template before you can populate it.

Rollover the Top/Bottom - When a row reaches the top/bottom of the list, do you want it to flip to
the other end?

Template Usage 35

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2.4 Child Window Button

(Procedure Control Template)

If you wish to call a separate window to enter child information, use this control template to call
it. It automatically displays the changes upon return from the window. There are two things to
remember:

1. If you are editing fields that aren't displayed in the listbox, then you must add those fields as
"Hot Fields" in the invoice.

2. The ChildWindow must not be a Form with a SaveButton. Rather, it should be a Window with
an OkButton template from the Super Invoice templates. For more information, see Child
Window OK Button.

You cannot populate this control until you have a Super Invoice control in place.

Child Window Procedure - This is the window procedure with the Super Invoice OkButton
template.

Handle all Inserts (instead of using EIP) - Normally, all inserts are handled by EIP. If you want
these to be intercepted and rerouted to the ChildWindow, then turn this on.

Handle all Changes (instead of using EIP) - This intercepts the regular Change button. It's the
functionally similar to deleting the record Change button, and replacing it with this
ChildWindow button control.

NOTE: If you turn on both of these "Handle" options, then EIP will never be used; ALL edits will
be processed by the child window. This is useful if your editing works better with a
regular window rather than EIP, but you still want all of the other benefits of Super
Invoice (transaction processing, etc.) In this situation, you may want to HIDE the child

Super Invoice - Documentation36

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

window button when the Super Invoice window opens, so that the user sees only the
regular Insert, Change and Delete buttons.

Template Usage 37

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

2.5 Child Window OK Button

(Procedure Control Template)

This control template is similar to the "SaveButton" control template that comes with the stock
templates. The difference is that it doesn't save the record. Instead, it just scans the entire
window to verify that the data is correct. Place this on a Window, in much the same way as you
would find a "SaveButton" template on a Form.

This procedure must be called from a Super Invoice window using the Child Window Button
control template.

Messages and Titles (NEW in Super Invoice 6.01) - Specify how to display the current editing
status.

Super Invoice - Documentation38

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

3 Appendices

3.1 Example Programs

The Super Invoice templates include one example program for Clarion/Legacy (INVOICE1), and
one for ABC (INVOICE1). They demonstrate a simple invoice program using Customers, Products,
Invoices, and InvItems. The two screens of consequence here are UpdateInvoice and
UpdateInvItem.

UpdateInvoice contains a Super Invoice control with the corresponding Insert, Change and Delete
buttons. It also contains a ChildWindowButton control to call UpdateInvItem, and the Shift
buttons.

UpdateInvItem is a full window to update the child record. This is especially useful if you have
fields that won't fit on the scrolling area (like TEXT fields), or too many editable fields to fit
comfortably in a list box.

New in Super Invoice 6.70 - The ABC version contains examples of both FileDrop and
FileDropCombo templates, along with checkbox and TEXT columns.

Appendices 39

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

3.2 Project Defines

Prior to our 7.0 template versions, we were utilizing the same LINK and DLL Project Defines as the
ABC libraries: _ABCLinkMode_ and _ABCDllMode_. This caused all of our libraries to be included
in your base/dictionary DLL, even if you weren't using them in a particular development project.

To make this inclusion more selective, as of our 7.0 versions we changed to use various other
switches. Some of these are product related (e.g. Super QBE uses _SuperQBELinkMode_ and
SuperQBEDllMode), while others are associated with one of our shared base classes (e.g. Drag
& Drop uses _SuperDDLinkMode_ and _SuperDDDllMode_). Usually the templates (especially the
global ones) automatically add the necessary entries to your Project Defines. If you happen to
use the templates in your APPs in the wrong combination, these can be inadvertently omitted.

For APP-based systems, you can force the switches to be included by using the Super Categories
global extension template. Every one of the Super Templates has this extension to apply its own
switches, so if you're using multiple templates in a particular APP, you may have to add this
extension for each of the products. (As was mentioned above, if there's already a global
extension populated for a given Super Template, then you don't have to add this extension for
that product.) Even if it's not needed, there's no problem with adding the SuperCategories global
extension.

For hand-coded PRJ-based systems, you must add the switches manually. Take note of their
names in the INC files, and then add them to the project settings like this:

Super Invoice - Documentation40

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Appendices 41

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

3.3 Troubleshooting

Problem:

I'm placing validity checks into my TakeAccepted method, and it doesn't seem to be responding
properly.

Solution:

Remember that TakeAccepted uses the queue variables, not the fields themselves. For example,
your field is called Itm:Quantity. In the TakeAccepted, TakeSelected and TakeEvent methods you
would refer to it as INV#.Q.Itm:Quantity. (The "#" will vary depending on your template settings.
 Look in the "Classes" tab for the actual name of the object.)

Problem:

My TakeAccepted event was called, even though I was not in that field.

Solution:

If you are leaving a row, the Invoice class automatically fires the TakeAccepted methods for all
editable columns. This is similar to the "AcceptAll" mode that is used when you press the [OK]
button on an update form. You must anticipate this behavior, and write your TakeAccepted
methods accordingly.

Problem:

I'm trying to use a FileDropCombo with BrowseEntry (Edit-In-Place), but the value that appears in
the FDC doesn't match the current value of my EIP field, and values chosen with the FDC are not
saved to the EIP field.

Solution:

When you're using a FileDropCombo, your USE variable must name the corresponding EIP field to
be updated. For example, if your EIP field is Cus:City, and your FileDropCombo lets them select a
record from the City file, then the FDC control's USE variable must be Cus:City, not Cit:City.

Super Invoice - Documentation42

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

3.4 Contacting Technical Support

If you have any troubles with this product, then please contact:

Mitten Software
2354 West Wayzata Blvd
Second Floor, Suite H
Long Lake, MN 55356

Voice: (952) 745-4941
Fax: (952) 745-4944

Internet: www.mittensoftware.com
answers@mittensoftware.com
www.boxsoft.net
www.boxsoft.net/contact.htm

Appendices 43

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

3.5 License Agreement

One License per Developer

This Super Template product is comprised of the templates, default applications, libraries, source
code, documentation, and help files provided with the package. You must have a separate
registered copy for each developer using it.

Redistribution

You are allowed to use the product for any programs that you create, and you are permitted to
distribute the generated source code. You may not, however, distribute any portion of the
product in its original or modified form without the prior written consent from BoxSoft
Development.

One exception to this is the example programs provided with this installation or separately from
BoxSoft or its agents: these may be distributed without penalty, in either their original or a
modified state.

Disclaimer

BoxSoft Development does not warranty this software for any use. Any expenses or lost time due
to errors in this product are not the responsibility of BoxSoft Development. We will attempt to
fix any errors that are brought to our attention, but we are not legally liable for any lack of
correctness of the product.

Super Invoice - Documentation44

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

Index
- A -
ABC 10

Accepted 10

Adding Rows 12, 26

Adding SuperInvoice to you Applications 11

Adding the Regular Controls for "In-Place" Entry 29

- B -
Buttons 34

- C -
CalcTotals 30

Child File 12, 26

Child Window 37

Child Window Button 35

Child Window OK Button 37

Class Libraries 6, 39

Classes 12, 26

Columns 12, 26

Contacting Technical Support 42

CreateControl 29

- D -
Defines 39

Directories 6

Disappear 39

DLLMode 39

- E -
EditClass 10

Embed Points 30

Entry Controls 29

Example Program 38

- F -
FileDrop Template 29

Formula Classes 30

Freeze 39

- G -
GPF 39

- I -
Include Files 6

Installation 6

Introduction 3

Invoice Control 30

- L -
License Agreement 43

LinkMode 39

LOGOUT 12, 26

- M -
Methods 30

- N -
Navigation 12, 26

- O -
OK Button 37

- P -
Populating an InvoiceControl Template 12

Project Defines 39

Property Syntax 29

- R -
Redirection File 6

Registering the Template 6

Rollover 34

RTFM Warning 5

Index 45

Copyright © 1989-2014, BoxSoft Corporation, All Rights Reserved.

- S -
Selected 10

Shift 34

Support 42

- T -
TakeAccepted 30

TakeEvent 10, 30

TakeSelected 30

Tech Support 42

Template Registry 6

Template Settings 12, 26

Troubleshooting 41

- U -
Upgrading From Earlier Versions 10

	Getting Started
	Introduction
	RTFM Warning!!!
	Installation
	Upgrading From Earlier Versions

	Template Usage
	Adding SuperInvoice to you Applications
	Invoice Control Template
	Invoice Control Template
	Populating an InvoiceControl Template
	Template Settings - ABC Chain
	Template Settings - Clarion/Legacy Chain
	Adding the Regular Controls for "In-Place" Entry
	Formula Classes
	Embed Points

	Shift Buttons
	Child Window Button
	Child Window OK Button

	Appendices
	Example Programs
	Project Defines
	Troubleshooting
	Contacting Technical Support
	License Agreement

